Scientists have long suspected that coralline algae are particularly sensitive to changes in ocean chemistry. Now, researchers have found that most species of coralline algae studied are negatively affected by ocean acidification.
In a new study published in Global Change Biology, an international team, including researchers from the University of Tsukuba, revealed that lower seawater pH is associated with decreases in the abundance, calcification rates, and recruitment of coralline algae. As levels of carbon dioxide increase in the atmosphere, larger amounts are absorbed by the oceans. The resulting changes in ocean chemistry spell trouble for calcifying species like corals and coralline algae.
Coralline algae are critical species in shallow marine ecosystems globally. By creating calcium carbonate skeletons, these algae act as “cement” for reef systems and provide new substrate for corals and other organisms to settle on. With ocean acidification, less carbonate is available to build these skeletons.
The effects of ocean acidification on different species of coralline algae have been studied for a number of years but the overall outlook for these species is unclear. The team reviewed all available studies on coralline algae and ocean acidification and used a variety of methods to tease out overall patterns.
— source University of Tsukuba | Nov 4, 2021